
A GSoC 2015 Proposal

Enhancing the Alias Analysis
Passes in LLVM
Mingxing Zhang, Tsinghua University

A
lias analysis (AA) is a prerequisite for
many program analyses, and the effec-
tiveness of these analyses depends on

the precision of the alias information they
receive. Thus I think it is necessary and
meaningful to increase the precision of the
current AA passes in LLVM by making them
interprocedural; field-sensitive; and context-
sensitive.

Background

In general, alias analysis is a technique that used
to determine whether or not separate memory ref-
erences point to the same area of memory. Many
applications of program analysis, such as program
optimization [1], automatic parallelization [4], and
finding bugs [3], need the alias information. And
almost all of these program analyses are more ef-
fective when given more precise alias information.
Moreover, the scalability of such program analyses
may also be impacted by AA’s precision [5].

Motivation

As a fundamental building block of code optimiza-
tion, there already exist many alias analysis passes
in LLVM, such as basicaa and steens-aa. But
these standard LLVM AA passes either take a large
amount of time (Anderson Analysis at cubic time
and large memory requirements) or are cheap but
somewhat imprecise (Steensgard Analysis). In or-
der to address this problem, cfl-aa, which is done at
Google, implements a demand-driven, CFL-based
methods based on the algorithm derived from re-

sent researches [8, 9]. It provides more accurate
result than Steensgard’s algorithm, while signifi-
cantly faster than Anderson’s. However, the current
implementation of cfl-aa is intraprocedural; field-
insensitive; and context-insensitive. As explained
in the following subsections, these properties imply
a huge space for increasing precision.

Intraprocedural V.S. Interprocedural

In compiler theory, an intraprocedural analysis
means that the analysis is done within the scope of
one procedure, while an interprocedural analysis is
done across the entire program. Albeit relatively
more time-consuming, interprocedural alias analysis
is needed in many scenarios. For example, detecting
memory leaks rely on interprocedure alias informa-
tion heavily, since an object with proper destructors
will never leak if its life cycle is within a function.

Section 5.2 of paper [6] also gives an example of
using interprocedure AA to find security vulnerabil-
ities. It tries to assure that a security key will not
flow into a String object.

Field-insensitive V.S. Field-sensitive

Yong et al [7] gives an in-depth evaluation of the
precision difference between field-sensitive and field-
insensitive AA, and find that “distinguishing in-
dividual fields of structs is important”. In their
evaluation, the average pointer sets produced by
field-insensitive AA are at least twice as large as
the sets produced field-sensitive AA (10X larger in
the worst case).

Page 1 of 3



Context-insensitive V.S. Context-sensitive

In Section 6.3 (Figure 6) of paper [6], the au-
thor compares the effectiveness of type refinement
between using context-sensitive AA and context-
insensitive AA, and shows a considerable increase.
Although the difference is not that significant when
compared with the field sensitive, as demonstrated
by Guyer et al [2], a small amount of imprecision in
isolated parts of the program can significantly im-
pact the effectiveness of the client analysis in specific
cases, such as security analysis and parallelization.

Plan

There are several things that I plain to do for en-
hancing the alias analysis passes in LLVM during
this summer of code project.

1. Make the alias analysis field-sensitive by repre-
senting fields of a struct with separated nodes.
In order to handle type casting, I intend to use
the “collapse at casting” approach described
in paper [7].

2. Handling special global variables, such as errno.

3. Extend cfl-aa to interprocedural analysis. Both
context-insensitive and context-sensitive ap-
proach will be explored. The implementation
of context-sensitive analysis may be based on
the cloning technique proposed by Whaley et
al [6].

The expectant schedule is given in Table 1.

Table 1: Time allocation of the project

Work Weeks

Investigating recent researches on
alias analysis

1

Profiling the code 1
Field-sensitive analysis 3
Handling special global variables 1
Context-insensitive interprocedural
analysis

2

Context-sensitive interprocedural
analysis

2

Evaluating the precision 1
Scrub code, write documents 1

About Me

In this section, I’d like to introduce myself briefly.
I’m a 3rd year PhD student from Tsinghua Uni-
versity, China. And my research area is mainly
focus on software reliability and distributed com-
puting, which means that I’ve used LLVM in many
of my past and on-gong projects for detecting and
tolerating bugs.

As an illustration, we have proposed a novel tech-
nique named Anticipating Invariant (AI), which can
anticipate concurrency bugs before any irreversible
changes have been made. Based on it, we imple-
mented a LLVM-based tool to tolerate concurrency
bugs on-the-fly. Experiments with 35 real-world
concurrency bugs demonstrate that AI is capable
of detecting and tolerating most types of concur-
rency bugs, including both atomicity and order
violations. We also evaluate AI with 6 represen-
tative parallel programs. Results show that AI
incurs negligible overhead (< 1%) for many non-
trivial desktop and server applications. And its
slowdown on computation-intensive programs can
be reduced to about 2X after using the bias instru-
mentation. The paper is published in FSE 2014 and
won a SIGSOFT distinguished paper award. The
source code of our implementation is also available
at http://james0zan.github.io/AI.html.

I have also done a 3-months internship at Google
NYC on improving database testing and a 9-months
internship at Microsoft Research Asia (MSRA) for
implementing a distributed (MPI-based) L-BFGS
library. And I have got an excellent assessment
for my MSRA internship. Moreover, I’ve visited
the Columbia University for 6 months and working
on a performance bug detection project, under the
supervising of Prof. Junfeng Yang.

My email is james0zan@gmail.com and my home-
page is http://james0zan.github.io/.

References

[1] Rakesh Ghiya and Laurie J. Hendren. Putting
pointer analysis to work. In Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL
’98.

[2] Samuel Z. Guyer and Calvin Lin. Error checking
with client-driven pointer analysis. Sci. Comput.
Program., 58(1-2), October 2005.

[3] David L. Heine and Monica S. Lam. A prac-

Page 2 of 3



tical flow-sensitive and context-sensitive c and
c++ memory leak detector. In Proceedings of
the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation,
PLDI ’03.

[4] Radu Rugina and Martin Rinard. Automatic
parallelization of divide and conquer algorithms.
In Proceedings of the Seventh ACM SIGPLAN
Symposium on Principles and Practice of Paral-
lel Programming, PPoPP ’99.

[5] Marc Shapiro, II and Susan Horwitz. The ef-
fects of the precision of pointer analysis. In
Proceedings of the 4th International Symposium
on Static Analysis, SAS ’97.

[6] John Whaley and Monica S. Lam. Cloning-
based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings
of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation,
PLDI ’04.

[7] Suan Hsi Yong, Susan Horwitz, and Thomas
Reps. Pointer analysis for programs with struc-
tures and casting. In Proceedings of the ACM
SIGPLAN 1999 Conference on Programming
Language Design and Implementation, PLDI
’99.

[8] Qirun Zhang, Michael R. Lyu, Hao Yuan, and
Zhendong Su. Fast algorithms for dyck-cfl-
reachability with applications to alias analysis.
In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and
Implementation, PLDI ’13.

[9] Xin Zheng and Radu Rugina. Demand-driven
alias analysis for c. In Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL
’08.

Page 3 of 3


